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Abstract

This study presents an in-depth analysis of the spatiotemporal changes in land use/land
cover (LULC) land surface temperature (LST) and urban heat islands (UHI) in Bogura
District, with a focus on Bogura Municipality, utilizing multispectral satellite images
from 1993 to 2023. The LULC of supervised classification identified significant shifts,
including a sharp expansion of settlement areas, particularly by 2023, and a notable
increase in vegetation cover, reflecting improved vegetation health. However, agricultural
and fallow lands have shown a marked decline, especially post-2000, suggesting shifts in
land use or a reduction in vegetation density. Water bodies have gradually decreased in
areas, likely due to land conversion or the drying up of sources. The normalized
difference vegetation index (NDVI) analysis corroborates these findings, highlighting
fluctuations in vegetation health and coverage. Concurrently, LST analysis reveals an
increase in higher temperature categories, closely linked to urbanization and the
formation of urban heat islands (UHIs). The expansion of settlement areas has intensified
the UHI effect, where urban zones exhibit significantly higher temperatures compared to
surrounding rural areas. Additionally, areas of low temperature have expanded, indicating
changes in land surface characteristics. The data underscores the dynamic nature of land
use changes over the three-decade period, with urbanization and land cover alterations
significantly impacting both vegetation and surface temperatures in the region. The study
provides a framework for creating plans to counteract the negative effects of climate
change, especially the UHI effect, and to direct sustainable urban planning.

Key words: Landuse, Land Surface Temperature, Urban Heat Island, Bogura District,
Landsat image.

Introduction

Urbanization and environmental change are profoundly interconnected, affecting
ecosystems, biodiversity, and local climates. Urban expansion's fast alteration of land use
and land cover (LULC) has a profound effect on ecosystems, biodiversity, and the local
and regional climate (Luck and Wu, 2002). The rapid urbanization in Bogura District has
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led to significant land use and land cover (LULC) changes over the past thirty years.
Remote sensing techniques have a vital role in identifying and controlling different
meteorological and environmental occurrences (Borges et al., 2016). Utilizing satellite
imagery from Landsat 5, 7, 8, and 9, this study investigates how these changes have
influenced land surface temperature (LST) and contributed to the formation of urban heat
islands (UHI). The Mono-window approach is a simplified method for calculating LST
that only requires a small number of specific meteorological data (Jie et al., 2008, Ding
and Shi, 2013). Several recent studies have utilized satellite data to examine the impacts
of Land Use and Land Cover Change (LULC) on Land Surface Temperature (LST)
(Ahmed et al., 2013; Zhang and He 2013). Previous studies highlight the impact of urban
expansion on ecosystems and climate, noting that rising LST leads to reduced plant cover
and increased heat island effects (Ramachandra et al., 2012). Socio-economic
advancement linked with urbanization often results in significant and lasting LULC
changes. These changes exhaust agricultural lands, threaten biodiversity, and alter water
resources, thereby affecting local and regional climates. The Bogura District, with its
rapid population growth and extensive agricultural expansion, faces numerous
environmental challenges exacerbated by climate change. This study aims to address
these issues by monitoring biophysical data and analyzing their temporal and spatial
relationships.

Despite the critical nature of LST and UHI phenomena, accurate assessments of land use
patterns remain underexplored. According to (Weng et al., 2004), there is a positive
correlation between Land Surface Temperature (LST) and the percentage of impermeable
surfaces, while there is a negative correlation between LST and the percentage of green
vegetation. Land surface temperature is a crucial parameter in land surface modeling,
influenced by various environmental factors and measurable through satellite thermal
infrared sensors (Kustas and Norman, 1996). This technology employs satellite and
airplane platforms, providing novel prospects for investigating the occurrence of Hls
(Voogt and Oke, 2003). Understanding the formation and growth of UHIs, areas with
significantly higher temperatures due to urbanization, is essential for developing
mitigation strategies (Xie and Zhou, 2015). By selecting appropriate satellite images and
utilizing remote sensing techniques, this study aims to enhance our understanding of
LULC dynamics and UHI development in Bogura District. The findings will be crucial
for mitigating socio-economic risks, such as drought, flooding, and biodiversity loss,
which are aggravated by climate change. Studies in various regions, including Dhaka and
Gazipur in Bangladesh, have shown significant LULC changes affecting LST. However,
the Bogura District lacks comprehensive studies on LULC and LST changes. This study
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aims to analyze LULC changes and their relation to UHI development in Bogura District
using multi-spectral satellite imagery. Various Landsat TM/ETM+/TIRS sensor's images
are used to study the urban heat island (UHI) effect.

Study area

The study area is Bogura District, and it is located in the northwestern part of Bangladesh
under Rajshahi Division (Fig. 1). The latitude of Bogura District is 24°51°N -24°85°N
and longitude is 89°22°E- 89°36°E.The area covers 2899 square kilometers (District
Statistics 2011: Bogura). The climate of the Bogura District is intense tropical monsoon
which consists of two main seasons which are dry season (November to March) and rainy
season (June to October). The average precipitation rate of the area is 1760 mm per year
(BMD, 2021). January is the coldest and April is the warmest month in the study
area.The population of the area is 38,15,192 and the average density is 1,316/km? (BBS,
2022).
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Fig. 1. Location map of the study area.
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Materials and Methods

The study is conducted with Landsat satellite images using supervised classification and
various indices approaches to quantify the spatiotemporal changes of landuse, and
algorithm retrieved LST and UHI of the Bogura district in Bangladesh (Fig. 2).
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Fig. 2. Methodological flow chart of the study.
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Satellite Images

Satellite imagery is often utilized to study the 'heat island effect' in metropolitan areas
(Walawender et al., 2014). To conduct this study, we obtained six sets of Landsat images
in GeoTIFF format for free from the United States Geological Survey (USGS) collection,
which is available at (https://earthexplorer.usgs.gov/). The images, which cover the
Bogura District in the years 1993, 2000, 2005, 2010, 2017, and 2023, were chosen from
three distinct path and row combinations to cover the full research region. These pictures
were georeferenced using the Universal Transverse Mercator (UTM) zone 45N
coordinate system, with reference to the World Geodetic System (WGS) 1984 datum, and
taken during daylight hours. Due to the scarcity of images with less than 10% cloud cover
along the required pathways and rows, there were random pauses between collections.
(Table 1) summarizes the data gathered from the United States Geological Survey.

Table 1. Landsat Images Used in the Study.

Year Sensor Platform Acquisition Date Resolution
1993 Landsat 5 TM 08-12-1993

2000 Landsat 7 ETM+ 17-12-2000

2005 Landsat 5 TM 07-11-2005 30 m
2010 Landsat 5 TM 05-11-2010

2017 Landsat 8 OLI 08-11-2017

2023 Landsat 9 OLI 01-11-2023

Methodology
Image Pre-Processing

This study utilized Landsat level-1 data from USGS Earth Explorer, specifically images
from 1993, 2000, 2005, 2010, 2017, and 2023. These images underwent geometric
correction to address distortions but often displayed radiometric anomalies due to
atmospheric transparency issues, solar radiation variations, and scanning equipment
flaws, necessitating radiometric correction for accurate representation.

Radiometric Correction

Radiometric correction is essential for comparing datasets over time, as it mitigates
spectral property influences (Paolini et al., 2006). This process involves calibrating pixel
values, transforming the sensor's Digital Numbers (DN) into measurements like radiance,
reflectance, or brightness temperature. Using sensor-specific metadata, the DN values are
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converted into top of the atmosphere (TOA) reflectance and at-sensor radiance, with
atmospheric correction achieved through the dark object subtraction method.

Layer Stack, Mosaic, and Subset

After image collection, the bands from the sensors were merged using layer stacking,
requiring uniform spatial resolution. Bands that are neither panchromatic nor thermal
were combined to enhance land feature distinction. The study area, defined by three
images from distinct WRS path and row combinations, was processed using mosaic
technique to create a cohesive image. The region of interest was selected and extracted
using the subset method, and the research area was partitioned for further analysis.

Conversion of Digital Number (DN) to Radiance

The main procedure for standardizing picture data from various sensors and platforms
involves converting DN values to Spectral Radiance, enabling consistent radiometric
measurements. Familiarity with the initial scaling coefficients is necessary for this
transformation. The spectral radiance (LX) has been computed using the equation
specified by Zanter (2016).
Ly =ML ™ Qe + AL )

Where,

L, = Spectral radiance (W/ (m® * sr * pm))

M_ = Radiance multiplicative scaling factor for the band.

A = Radiance additive scaling factor for the band.

Qca = Pixel value in DN

To proceed with extra processing, it is necessary to convert the digital numbers (DN) to
radiance for bands 2, 3, and 4 of the Landsat TM and ETM+ sensors in the years 1993,
2000, 2005, and 2010. To accomplish this, the radiance multiplicative and additive
scaling factors for band 2, 3, and 4 of the corresponding images are acquired from the
Landsat metadata files that accompany the downloaded images (Table 2).
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Table 2. Parameters Used for DN to Radiance conversion.

Year Sensor Band No. Rad. Mul. Scaling Rad. Add. Scaling
Factor (M,) Factor (AL)
1993 Landsat-5 2 1.3222 -4.16220
3 1.0440 -2.21398
4 0.87602 -2.38602
2000 Landsat 7 2 0.79882 -7.19882
3 0.62165 -5.62165
4 0.63976 -5.73976
2005 Landsat-5 2 1.32654 -4.16220
3 0.72356 -2.62354
4 0.63976 -5.65165
2010 Landsat-5 2 0.79882 -2.38602
3 1.05644 -4.62165
4 0.76543 -3.62165

Conversion of Radiance to TOA Reflectance

To create clear Landsat landscapes, spectral radiation can be converted into reflectance at
the planetary or top of atmosphere (TOA) level. Converting photographs offers two
advantages when comparing images captured by different sensors. The cosine effect can
be utilized to minimize the influence of shifting solar zenith angles caused by variances
in data gathering time. Moreover, the fluctuations in solar radiation outside the Earth's
atmosphere caused by differences in spectral bands can also be modified. The radiance of
the selected bands from the previous phase has been converted into images, which were
then used to calculate reflectance. The calculation of the total reflectance from the Earth's
surface and atmosphere for the years 1993, 2000, 2005, and 2010 has been conducted
using Landsat TM and ETM+ data. The equation used for this calculation is the one
supplied by Irish (2000).
TchLy
"ESUN, cos 0

Op (2)

Where, p, - Planetary Reflectance, L, = Spectral Radiance at the sensor's aperture

d = Earth-Sun distance in astronomical units, ESUN, = Mean solar exoatmospheric
irradiance, 6s= Solar zenith angle in degrees
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The solar zenith angle can be determined by subtracting the solar elevation angle, as
indicated in the metadata file, from 90 degrees. Additionally, the mean solar exo-
atmospheric irradiance (ESUNy) and the Earth-Sun distance (d) are used in the
radiometric correction process to account for variations in solar energy received at the
Earth's surface derived using the Julian Calendar, are respectively provided in (Table 3
and Table 4).

Table 3. Solar irradiance for landsat 5(TM) and landsat 7(ETM+).

Band Landsat 5 (TM) Landsat 7 (ETM")
(W/m?*um) (W/m?*uim)
1 1957 1970
2 1826 1842
3 1554 1547
4 1036 1044
5 215.0 225.7
7 80.67 82.06
8 - 1369

Table 4. Parameters used for radiance to reflectance conversion.

Year WRS Path  Earth-Sun distance  Solar zenith angle Mean solar
(Landsat  and Row in astronomical in degrees (65) exo-atmospheric
sensor) units (d) irradiance (ESUN,)
1993 138,42 0.99280 90 - 41.54147541 1826 (Band 2)
(TM) 138,43 0.99280 90 - 42.51407377 1554 (Band 3)
139,42 0.99527 90 - 43.89935287 1036 (Band 4)
2000 138,42 0.98724 90 - 38.81661247 1842 (Band 2)
(ETM+) 138,43 0.98724 90 - 39.97976610 1547(Band 3)
139,42 0.98409 90 - 35.19818820 1044(Band 4)
2005 139,88 0.98724 90 - 41.36576562 1825 (Band 2)
(TM) 138,43 0.99432 90 - 40.68539244 1554(Band 4)
138,97 0.9967 90 - 43.23474323 1044(Band 4)
2010 139,42 0.98724 90 - 39.78468454 1836 (Band 2)
(TM) 133,25 0.99543 90 - 41.64748456 1064(Band 4)
136,89 0.98423 90 - 42.37835688 1044(Band 4)
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Conversion of DN to TOA Reflectance

The process of transforming DN values to TOA for Landsat 8 and 9 images is a simple
and efficient one-step procedure. This allows for the convenient conversion of data from
2017 and 2023 into reflectance images using the equation (Zanter, 2016).

by =M " Qea t A, @)
sin®g:)

Where, p, = TOA spectral reflectance.

M, = Reflectance multiplicative scaling factor for the band.

A, = Reflectance additive scaling factor for the band.

Qca = Pixel value in DN.

0se = Local sun elevation angle (provided in degrees in the metadata).
To retrieve the Top of Atmosphere (TOA) reflectance values for bands 3, 4, and 5 of
Landsat 8 images from the years 2017 and 2023, the reflectance multiplicative and
scaling factor values, along with the local sun elevation angle, are extracted from the
Landsat metadata files that accompany the downloaded images (Table 5).

Table 5. Parameters Used for DN to Reflectance Conversion.

Year (Landsat WRS path Sun elevation Reflectance Reflectance
Sensor) and row angle in degrees multiplicative additive scaling
(Ose) scaling factor (M) factor (AL)
2017 138,42 38.24110398
(OLITIRS) 138,43 3945762644
139,42 40.00261158
2023 138,42 4287747217 000002 -0.100000
(OLVTIRS) 138,43 44.07959061
139,42 45.36241130
Accuracy Assessment

To distinguish true land cover changes from potential classification errors, error matrices
and per-class accuracy indices were calculated for the year 2023. In this process, 90
stratified random points were generated across the study area for the selected year using
Google Earth imagery to determine the actual LULC classes. These verified classes,
derived from the reference images, were then utilized to assess per-class accuracy (i.e.,
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user’s and producer’s accuracy). Additionally, overall accuracy and the Kappa coefficient
for the year were computed to provide a comprehensive evaluation of the classification
performance.

Producer’s Accuracy (PA): Measures how well a particular land cover class has been
classified, from the perspective of the classifier (or producer). It indicates the probability
that a reference pixel (ground truth) is correctly classified in the map.

User’s Accuracy (UA): Measures the accuracy from the user’s perspective, showing how
often the class on the map represents the real-world category.

Both Producer’s Accuracy and User’s Accuracy are typically reported together, but
Overall Accuracy is a combined metric that represents the proportion of correctly
classified pixels across all classes.

Normalized Difference Vegetation Index (NDVI) Retrieval

The Normalized Difference Vegetation Index (NDVI) evaluates vegetation by
quantifying the difference between near-infrared light, which is strongly reflected by
plants, and red light, which is absorbed by plants. The vegetated sections are represented
with a higher luminosity, whereas the non-vegetated portions are represented with a
lower luminosity. The computation of NDVI can be executed utilizing the equation
stated by (Rouse et. al in 1974).

NIR—RED

NDVI = ———— 4)
NIR+RED

Where, NIR =Reflectance of Near Infra-red band
RED = Reflectance of Red band

The Normalized Difference Vegetation Index (NDVI) is a quantitative measure that
ranges from -1 to +1. Regions with abundant vegetation exhibit positive values close to
+1, while places covered by snow, clouds, and bodies of water have lower values near -1.
Band 4 of Landsat 5 (TM) and Landsat 7 (ETM+) corresponds to the Near Infrared (NIR)
region, while band 3 represents the Red region.

Band 4 — Band 3

NDVI =——  (For Landsat 5and 7) (5)
Band 4 + Band 3

On the other hand, band 5 and band 4 of Landsat 8 and 9 represent the reflectance of
near-infrared (NIR) and red regions, respectively.
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Band 5 — Band 4

NDVI = ——  (For Landsat 8 & 9) (6)
Band 5+ Band 4

Radiance to Brightness Temperature Conversion

By inputting the converted radiant thermal bands into the calculation provided by Zanter
(2016), the brightness temperature is determined.
K, (7)

T, =
In( K,

+ 1)

2
Where, T, = Top of atmosphere brightness temperature (K)
K, = Second calibration constant (K)
Ky = First calibration constant (Wm™2sr~tpym™1)
L, = Spectral radiance (Wm~2sr~*um™1)

The values of the calibration constants are given in (Table 6).

Table 6. Thermal Band Calibration Constants.

Satellite Constant K; (Wm™2sr~tum™1)  Constant K, (Kelvin)
Landsat 5 TM 607.76 1260.56
Landsat 7 ETM+ 666.09 1282.71
Landsat 8 TIRS 774.89 1321.08
Landsat 9 TIRS 799.03 1329.24

Land Surface Emissivity Computation

Land Surface Emissivity (LSE) is the natural materials intrinsic property and is
considered a prominent surface attribute. This method can be used to create maps of
surface materials for geological studies on Earth as well as other worlds.

The equation used to compute LSE is as follows (Sobrino et al., 2004):
LSE = 0.004 * P, + 0.986 (8)

Where, P, = Vegetation proportion
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_[ (WDVI-NDVInin) 1.
Pu= [(NDVImaX _ NDVIpmin) ©)
Here, NDVI = Normalized Difference Vegetation Index obtained by previous equation.

NDVI i, = Min. value of NDVI

NDVI.x = Max. value of NDVI

Retrieval of Land Surface Temperature

The following equation has been employed to compute the Land Surface Temperature
(Artis and Carnahan, 1982).

_ Ty
LST = 1+(yTp/a)In €

(10)
Where, T, = At-satellite brightness temperature (K)

vy = Wavelength of emitted radiance (um)

a = h*c/K = 1.4388 * 102 m K = 14388 um K

h = Planck’s Constant (6.626 * 10 J-s)

¢ = Velocity of light (2.998 * 10° m/s)

K = Boltzmann Constant (1.38 * 102 J/K)

€ = Land surface emissivity

The values of y for different Landsat bands are given in (Table 7).

Table 7. Wavelength of emitted radiance used for LST retrieval.

Satellite Band Wavelength, y (um)

Landsat 4, 5 and 7 6 11.45

Landsat 8 10 10.8

Landsat 9 11 12
Results

Spatial-temporal Distribution of LULC in Bogura District

A systematic analysis was conducted utilizing supervised classification of thematic
satellite images from 1993, 2000, 2005, 2010, 2017, and 2023 to examine the changes in
land use and land cover (LULC) in the Bogura District (Fig. 3). LULC (Land Use/Land
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Cover) Trends reflect a notable increase in settlement areas, which grew from 61.67 km?2
in 1993 to 625.71 km? in 2023 (Fig. 4). Agricultural land has decreased slightly from
1146.45 km? to 1089.70 kmz, while vegetation cover has diminished from 1497.06 km? to
831.99 km2. The area of waterbodies has remained relatively stable, and bare soil/fallow
land has increased from 96.67 km2 to 232.30 km?, indicating ongoing land degradation or
reduced vegetation.

LULC of Bogura District

N LULC 1993 N LULC 2000

LULC 2005 LULC 2010

LULC 2017 LULC 2023

Legend

I waterbody
I Settlement
[ Agricultural Land
Il Vegetation

[_]Bare Soil/ Fallow Land 0255 10 15 ‘ 20
N —

Fig. 3. Supervised classification based spatial distribution of LULC of Bogura District from 1993 to
2023.
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Fig. 4. Graphical representation of LULC calculation from 1993-2023.

Accuracy Assessment result

(Table 8 presents the results from the per-class accuracy assessment for the year 2023.
User's accuracy (UA) and producer's accuracy (PA) for most land cover classes ranged
between 60% and 88%. The Waterbody class exhibited high accuracy, with UA and PA
values of 85% and 88%, respectively, reflecting reliable classification. Similarly, the
Settlement class showed strong performance, with UA of 88% and PA of 82%. In
contrast, the Agricultural Land and Bare Soil/Fallow Land classes demonstrated lower
accuracies, with the lowest PA (62%) observed for Bare Soil/Fallow Land. This is likely
due to the spectral similarity between these classes, which introduces misclassification
errors. The Vegetation class achieved moderate accuracy, with UA and PA values of 72%
and 75%, respectively, indicating some misclassification with other land cover types.
Despite these variations, the overall accuracy was 89%, and the Kappa coefficient was
0.815, indicating strong agreement between the classified map and reference data.

Spatial-temporal Distribution of LULC in Bogura Municipality

Bogura Municipality (Bogura Sadar) is in the center of Bogura District and is heavily
impacted by urbanization (Fig. 5). The municipality is undergoing massive urbanization
development. The Bogura district municipality's settlement area is rapidly expanding.
Vegetated and agricultural fields are declining, while habitation and barren lands are
growing. Despite fast infrastructure development, the Bogura Sadar or Bogura
municipality region faces threats of environmental deterioration and biodiversity loss.
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Table 8. Per-class accuracy assessments of multi-temporal for the year 2023.

LULC Class Samples (n) User’s Accuracy Producer’s
(UA) Accuracy (PA)

Waterbody 15 0.85 0.88
Agricultural Land 20 0.65 0.68
Vegetation 20 0.72 0.75
Settlement 20 0.88 0.82
Bare Soil/ Fallow Land 15 0.60 0.62
overall accuracy 0.89

Kappa coefficient 0.815

Bogura Municipality LULC

1993

Legend

I waterbody

I Settlement

[770 Agricultural Land _
[ Vegetation g

[1Bare Soil/ Fallow Land

35 175 0 35 7 Kilometers
O -

Fig. 5. Spatial Distribution of LULC of Bogura Municipality from 1993 to 2023.
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Spatial-temporal Distribution of LST in Bogura District

The land surface temperature areas are classified into five classes which are very low
temperature(<24°C), low temperature(24-26°C), moderate temperature(26-28°C), high
temperature(28-30°C) and very high temperature (>30°C) covered areas (Fig. 6). The
very low temperature category decreased sharply from 2817.96 km2 in 1993 to just 61.78
kmz2 in 2023 (Fig. 7). Conversely, areas experiencing low, moderate, high, and very high
temperatures have all increased, with the most notable rise in the high temperature
category, expanding from 0 km2 in 1993 to 140.23 km2 in 2023.

LST 1993 LST 2000

LST 2010

LST of Bogura LST 2005
District

LST 2017 LST 2023

LST°C

[T Very Low (<24) ‘%
[ Low (24-26) ;
[ Moderate (26-28) : ;
1 High (28-30) e, o G
I Very High (>30) \ : ! %

i

025§ 10 15 2
- — —

Fig. 6. Spatial Distribution of LST of Bogura District from 1993 to 2023.
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Fig. 7. Graphical representation of LST calculation from 1993-2023.
Spatial-temporal Distribution of NDVI in Bogura District

The NDVI data reveals changes in land cover and vegetation health from 1993 to 2023
(Fig. 8). Waterbody NDVI values declined from 298.86 km2 in 1993 to 155.34 km? in
2023, indicating reduced waterbody areas or vegetation around them (Fig. 9). Fallow land

NDVI based LULC classification of Bogura District

1993

Legend
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[ Agricultural Land
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0255 10 15 20
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Fig. 8. Spatial Distribution of NDVI based LULC classification of Bogura District from 1993 to 2023.
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NDVI
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Fig. 9. Graphical representation of NDVI from 1993-2023.

NDVI values fluctuated significantly, dropping from 1489.71 km? in 1993 to 182.85 km?
by 2023, reflecting a decrease in fallow land or vegetation changes. Agricultural land
NDVI values increased from 802.85 km? in 1993 to 1003.45 km? in 2017 but then
decreased to 657.90 km2 in 2023, suggesting variations in agricultural practices.
Vegetation NDVI values generally rose from 320.39 km? in 1993 to a peak of 2263.31
kmz2 in 2010 before slightly decreasing to 1915.71 km? in 2023, indicating overall
improved vegetation health with some fluctuations.

Discussion

The analysis of spatiotemporal changes in Bogura District from 1993 to 2023 reveals
significant shifts in land use, land surface temperature (LST), and vegetation cover. The
NDVI analysis highlights a substantial increase in vegetation cover, rising from 320.39
km2 in 1993 to 1915.71 km? in 2023. This indicates overall improved vegetation health,
although the increase in vegetation is somewhat counterbalanced by the notable decline
in other land cover types. Waterbodies have decreased dramatically from 298.86 km? to
155.34 kmz, and fallow land has sharply reduced from 1489.71 km? to 182.85 kmz.
Agricultural land has also seen a reduction, from 802.85 km?2 to 657.90 km?, suggesting
shifts in land use and potential impacts on local ecosystems.

The LST data reveals a significant shift towards higher temperature categories. The area
classified under very low temperatures has decreased sharply from 2817.96 kmz2 in 1993
to just 61.78 km2 in 2023. Conversely, areas experiencing low, moderate, high, and very
high temperatures have all increased, with the most notable rise observed in the high
temperature category, expanding from 0 km?2 in 1993 to 140.23 km? in 2023. This shift
reflects the intensifying urban heat island (UHI) effect driven by increased urbanization.
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Land Use/Land Cover (LULC) trends further underscore the impact of urbanization.
Settlement areas have expanded significantly from 61.67 km?2 in 1993 to 625.71 km? in
2023, highlighting rapid urban growth. Concurrently, agricultural land has decreased
slightly from 1146.45 km? to 1089.70 km?, while vegetation cover has diminished from
1497.06 km? to 831.99 km2. The area of waterbodies has remained relatively stable, but
bare soil and fallow land have increased from 96.67 km? to 232.30 km?, indicating
ongoing land degradation or reduced vegetation.

The strengths of this study lie in its comprehensive analysis using multispectral satellite
images, which provides a detailed understanding of land use dynamics and their effects
on surface temperatures. However, the study's reliance on satellite data alone may not
capture all local variations, and integrating field surveys could enhance the accuracy of
the findings.

This research is crucial for addressing the adverse impacts of urbanization and climate
change. By identifying the key areas of change and their effects on temperature and
vegetation, the study supports the development of strategies for sustainable urban
planning and climate resilience. It provides a framework for mitigating the urban heat
island effect and guiding efforts to balance urban growth with environmental
conservation.

Conclusion

The strong link between land use-land cover (LULC) changes, Normalized Difference
Vegetation Index (NDVI) variations, and land surface temperature (LST) help to
understand the development of heat islands in Bogura District. Rapid urbanization has led
to significant increases in settlement areas and surface temperatures, intensifying the
urban heat island (UHI) effect. As urban areas expand, they replace vegetation and water
bodies with impervious surfaces, contributing to higher LST and reduced NDVI values.
The decline in fallow and agricultural lands, driven by growing food demands and urban
sprawl, exacerbates habitat loss and environmental degradation. The findings underscore
the urgent need for sustainable development strategies to mitigate the UHI effect,
preserve biodiversity, and balance urban growth with ecological conservation.
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